How to Write a Marker File in a Luigi “PigJobTask”

This is supposed to be a brief aid to memory on how to write marker files, when using “Luigi“, which I explained in a former blog post.

What is a Marker File?

A marker file is an empty file created with the sole purpose of signalizing to another process or application that some process is currently ongoing or finished. In the context of scheduling using Luigi, a marker file signalizes the Luigi scheduler that a certain task of a pipeline has already been finished and does not need to (re-)run anymore.

How the Common Luigi Job Rerun Logic Works

Every Luigi task has a run method. In this run method you can use any sort of (Python) code you desire. You can access the input and output streams of the Task object and use it to write data to the output stream. The principle is that a Luigi Task will not run again, if the file with the filename defined in the output target already exists. This can be either a LocalTarget (local file) or an HDFSTarget (file saved to HDFS) or any other custom target. That’s basically it.

How to Write a Marker File in a PigJobTask

Using a PigJobTask, the idea is that you run a Pig script of any complexity. You define the input and output files in your pig script. In the Luigi pipeline, you basically define the pig script location that you want to run and optionally a few other parameters depending on your Hadoop cluster configuration, but you don’t need to implement the run method anymore.

The scenario is that you do not have access to the HDFS output directory, e.g. because its the Hive warehouse directory or the Solr index directory,… or you simply can’t determine the output name of the underlying MapReduce job. So you need to “manually” create an empty file locally or in HDFS that signalizes Luigi that the job already has successfully run. You can specify an arbitrary output file in the output method. This will not create a marker file yet. The trick is to implement the run method specify explicitly to execute the pig script and do arbitrary stuff, such as creating a marker file, afterwards in the method.

You can see a sample PigJobTask that utilizes this technique below

class HiveLoader(luigi.contrib.pig.PigJobTask):
'''
Pig script executor to load files from HDFS into a Hive table (can be Avro, ORC,....)
'''

input_directory = luigi.Parameter()
hive_table = luigi.Parameter()
pig_script = luigi.Parameter()
staging_dir = luigi.Parameter(default='./staging_')

def requires(self):
return DependentTask() # requirement

def output(self):
'''
Here the output file that determines if a task was run is written.
Can be LocalTarget or HDFSTarget or ...
'''
return luigi.LocalTarget(self.staging_dir + "checkpoint")

def pig_options(self):
'''
These are the pig options you want to start the pig client with
'''
return ['-useHCatalog']

def pig_script_path(self):
'''
Execute pig script.
'''
return self.pig_script

def pig_parameters(self):
'''
Set Pig input parameter strings here.
'''
return {'INPUT': self.input_directory,
'HIVE_TABLE': self.hive_table
}

def run(self):
'''
This is the important part. You basically tell the run method to run the Pig
script. Afterwards you do what you want to do. Basically you want to write an
empty output file - or in this case you write "SUCCESS" to the file.
'''
luigi.contrib.pig.PigJobTask.run(self)
with self.output().open('w') as f:
f.write("SUCCESS")

My Impressions of the Hadoop Summit Dublin 2016

The Hadoop Summit is a tech-conference hosted by Hortonworks, being one of the biggest Apache Hadoop distributors, and Yahoo, being the company in which Hadoop was born. Software developers, consultants, business owners, administrators, that have a mutual interest in Hadoop and the technologies of its ecosystem, all gathered in Dublin – this year’s Hadoop Summit of Europe took place in Ireland. The Hadoop Summit 2016 Dublin had some great  keynotes, plenty of time to network and a lot of exciting talks about bleeding edge technology, its use cases and success stories. Also it was a great opportunity for companies working with Hadoop to present themselves and for the visitors to get to know them.

20160414_103139

Keynote: “Data is Beautiful”

The organisation of the conference was great. 1300 people participated, but it never felt crowded, nor were there any (big) waiting lines to enter the speaker rooms or at the lunch buffet.

My Favorite Talks

This is a list of my favorite talks in a chronological order with their videos embedded. To be honest, this list is basically almost all of the talks that I saw in person and probably I missed even more great talks, that were given in parallel. Fortunately, we can see all of them on the official Hadoop Summit 2016 Dublin Youtube channel.

  • SQL streaming: This talk gave a really nice overview of the development of an SQL streaming solution with all its technical challenges and how they were addressed. Also simple technical use cases were discussed and compared to traditional SQL, where each query terminates, whereas streaming SQL queries never terminate.

  • Hadoop at LinkedIn: Here we got valuable insights into the Hadoop landscape of LinkedIn, as well as job monitoring and automated health checks. A job monitoring tool, Dr. Elephant, developed by LinkedIn was open sourced only a few days before the start of the Summit.

  • IMG-20160423-WA0000Containerization at Spotify:  This talk was about how Spotify uses docker containers and the tools involved in their automated IT landscape. The best part starts at 39:30, where it is revealed, that Spotify overcomes security challenges by not implementing internal security measurements at all. According to the speaker everyone can access everyones data. If life could always be as simple as that 🙂

  • Apache Zeppelin + Apache Livy: Apache Zeppelin already is a great tool for interactive data analysis, exploration or even doing ETL tasks using Apache Pig, querying data using Apache Hive, as well as executing Python, R or bash scripts. Apache Livy helps data scientists work together in one notebook on a secure cluster. What I like a lot about this talk is, that the speakers nicely explain the authentication mechanism involved.

  • Apache Phoenix: Apache Phoenix is a SQL query engine on top of Apache HBase and much more. This talk was basically a view on the capabilities and features of Apache Phoenix. Great stuff – nothing more to add. Watch the video!

10 Years of Hadoop Party

In the night of day one, the Guinness storehouse was utilized as a huge burger-beer-and-big-data networking event. As you can imagine there was good food, Guinness, great music by Irish bands on several floors and of course most importantly the same cool people attending the conference.

IMG_20160413_200647.jpg

Author in the Guinness storehouse

Summary

My first Hadoop Summit attendance was a great experience in all its particulars. I got great contacts, gained lots of knowledge and had lots of fun at the same time. Hopefully, I will be able to attend the next Hadoop Summit 2017 in Munich.